Skip to main content

Archimedes Biography Quotes 2 Report mistakes

2 Quotes
Known asArchimedes of Syracuse
Occup.Mathematician
FromGreece
Born287 BC
Syracuse, Sicily
Died212 BC
Syracuse, Sicily
CauseKilled by a Roman soldier during the sack of Syracuse
Origins and Setting
Archimedes was born around 287 BCE in the Greek city of Syracuse on the island of Sicily, a Hellenistic center linked by commerce and scholarship to the wider Mediterranean. Ancient sources name his father as Phidias, sometimes described as an astronomer, though little is securely known about his family beyond this. Syracuse in his youth moved through periods of instability before settling under the rule of Hieron II, whose long reign fostered prosperity and patronage of the arts and sciences. Archimedes grew up in a milieu where practical engineering, military needs, and theoretical inquiry intersected.

Education and Intellectual Circle
Later tradition places Archimedes for a time in Alexandria, where the Museum and Library gathered leading minds. Whether or not he studied there formally, his writings show close ties to Alexandrian scholars. He corresponded with Conon of Samos and, after Conon's death, with Dositheus of Pelusium, to whom several treatises are addressed. He also dedicated a remarkable work, The Method, to Eratosthenes of Cyrene, then a prominent figure in Alexandria. These connections positioned Archimedes within the most active mathematical network of his age, joining the legacies of Euclid and Apollonius with novel techniques of his own.

Mathematical Achievements
Archimedes advanced geometry through rigorous use of the method of exhaustion, anticipating integral ideas by summing infinitely many diminishing parts. In Quadrature of the Parabola he proved that the area of a parabolic segment equals four-thirds the area of a certain inscribed triangle, unveiling a geometric series argument of surprising elegance. In On Spirals he studied the curve now bearing his name, solving problems of rectification and quadrature for figures generated by it. Most celebrated is his Measurement of a Circle, where by inscribing and circumscribing polygons he established bounds for pi between 3 10/71 and 3 1/7, an accuracy unmatched for centuries. In On the Sphere and Cylinder he determined the surface area and volume of the sphere and related them to those of the circumscribing cylinder, a discovery he prized above all others.

Mechanics and Hydrostatics
Archimedes transformed statics by deriving the law of the lever and center of gravity principles in On the Equilibrium of Planes. He linked mechanical insight with geometric proof, a relationship he made explicit in The Method, where heuristic balancing of infinitesimal slices guided rigorous demonstrations. In hydrostatics, On Floating Bodies articulated the principle of buoyancy: a body immersed in a fluid experiences an upward force equal to the weight of the displaced fluid. A famous anecdote, told by Vitruvius, connects this principle to King Hieron II's request to test a gold crown; the story of Archimedes leaping from a bath shouting Eureka is part of later tradition, illustrating rather than documenting his insight.

Inventions and Practical Engineering
Though primarily a mathematician, Archimedes applied theory to devices and machines. The Archimedean screw, a helical pump for raising water, is credited to him in antiquity and saw long practical use. He studied compound pulleys and related systems, and is associated with the boast that with a place to stand he could move the Earth, demonstrating mechanical advantage to Hieron II. While the later tale of burning mirrors focusing sunlight on ships is doubtful, ancient authors describe effective defensive engines attributed to him.

Astronomy and Cosmology
In The Sand Reckoner, a letter to Gelon, son of Hieron II, Archimedes designed a notation to name numbers vastly greater than those normally expressible in Greek numerals, allowing him to estimate the number of grains of sand needed to fill the cosmos. In that treatise he surveyed and critiqued contemporary models of the universe, mentioning Aristarchus of Samos and his heliocentric hypothesis. Other ancient reports credit Archimedes with constructing a geared sphere or planetarium that modeled celestial motions, a testimony to his mechanical ingenuity and interest in astronomy.

The Siege of Syracuse and Death
During the Second Punic War, Rome besieged Syracuse beginning in 214 BCE under the command of Marcus Claudius Marcellus. Ancient narratives, including that of Plutarch, credit Archimedes with devising catapults, stone-throwers, and grappling mechanisms sometimes called the Claw of Archimedes, which hindered Roman assaults by land and sea. Despite these successes, Syracuse fell in 212 BCE. Archimedes was killed by a Roman soldier during the sack, contrary to Marcellus's reported orders to spare him. Stories that his last words concerned not disturbing his diagrams capture the image of a thinker absorbed in geometry to the end.

Writings, Transmission, and Commentaries
Many of Archimedes's treatises survive: On the Sphere and Cylinder, Measurement of a Circle, On the Equilibrium of Planes, On Spirals, On Conoids and Spheroids, Quadrature of the Parabola, On Floating Bodies, The Sand Reckoner, and The Method (the last known in modern times from a palimpsest). Much of what we know about his arguments comes through later commentators, notably Eutocius of Ascalon, who preserved proofs and problems linked to Conon and Dositheus. Pappus of Alexandria discussed Archimedean techniques in his Collection, and Roman authors such as Cicero and Vitruvius transmitted crucial anecdotes. Cicero reported finding a tomb near Syracuse bearing a carving of a sphere and cylinder, said to fulfill Archimedes's wish that the geometry he valued most adorn his monument.

Reputation and Legacy
Archimedes's blend of theoretical power and practical insight shaped mathematics, physics, and engineering for millennia. His determination of areas, volumes, centers of gravity, and bounds for pi set standards for rigor. His hydrostatics became foundational for fluid mechanics. His mechanical reasoning in The Method foreshadowed integral calculus, later recognized by mathematicians who studied Greek texts in the Byzantine, Arabic, and Latin traditions. Through the efforts of scholars such as Eratosthenes and Dositheus in his own time, and through commentators and statesmen like Plutarch and Cicero in later centuries, Archimedes emerged as an emblem of mathematical genius rooted in the Greek world of Syracuse yet connected to the intellectual life of Alexandria and beyond.

Our collection contains 2 quotes who is written by Archimedes, under the main topics: Wisdom - Knowledge.

2 Famous quotes by Archimedes